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Abstract

When people plan, they often do so in the face of uncertainty.
However, little is known about how uncertainty affects plan-
ning. To study these effects, we used a reward gathering task
in which the we varied the reliability of announced rewards
varied from certain to completely random. We quantitatively
compared several planning models. We found that participants
used a suboptimal approach, failing to directly incorporate
stochasticity into their planning. Instead, they “compensated”
for uncertainty by decreasing their planning effort as stochas-
ticity increased. First-move response time correspondingly de-
creased with increasing stochasticity. Our findings generalized
to a manipulation of transition uncertainty. Together, these
findings open the door to a more comprehensive and computa-
tionally grounded understanding of the role of stochasticity in
planning.
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Introduction
Planning is difficult. One of the challenges of planning is the
fact that the future contains some level of irreducible uncer-
tainty. This uncertainty, in turn, influences how people plan.
Intuitively, in a very random environment, one might feel that
it is simply “not worth” putting the effort into making a plan.
If the future is uncertain, why bother? Here we attempt to
understand this phenomenon.

Early cognitive studies of planning focused on tasks that
had minimal uncertainty, focusing instead on difficulty de-
rived from the task structure. In tasks like the Tower of Lon-
don (Shallice, 1982) and Tower of Hanoi (Simon, 1975), the
participant knows with full certainty the outcome of their ac-
tions. While this work laid a strong foundation for under-
standing the cognitive and neural underpinnings of prospec-
tive reasoning (Owen, Downes, Sahakian, Polkey, & Rob-
bins, 1990), the tasks did not reflect the changing and often
stochastic nature of the real world. More modern planning
tasks, such as the two-step task (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011), introduced randomness in the transi-
tion structure of the task to probe how people make decisions
in uncertain environments. It is noteworthy, however, that
most studies using variants of the two-step task (so-called
N-step tasks) did not vary the uncertainty of the environ-
ment across different conditions. Therefore canonical plan-
ning studies, old and new, have failed to probe the role of
uncertainty in planning.

For studies addressing decision making in uncertain envi-
ronments, we look towards learning and navigation, two do-
mains where uncertainty is inextricably intertwined with de-
cision making. Behrens, Woolrich, Walton, and Rushworth
(2007) demonstrated that people adapt their learning rates ac-
cording to the uncertainty of their environment, with higher
learning rates in uncertain environments. While not explic-
itly a planning task, this work showed that people infer opti-
mal strategies in stochastic learning environments. Wiener,
Lafon, and Berthoz (2008) used a navigation task (a vari-
ant of the Traveling Salesman Problem) where participants
were asked to retrieve a hidden object at one of six loca-
tions. They found that people were able to effectively learn
and use probabilistic information about the object’s posi-
tion to better retrieve the target object; in other words, hu-
mans adapt their planning strategies to the uncertainty of their
environment. More recently, Mitra, Srivastava, and Srini-
vasan (2023) demonstrated that participants in a farming task
chose shorter-horizon crops when faced with negative re-
source shocks. However, this study did not model how people
plan or how planning effort is modulated by uncertainty. In
sum, the field lacks an understanding of how people change
their planning behavior in response to uncertainty.

There are a few ways that people could adapt their plans
in the face of randomness. One hypothesis is that people ex-
plicitly factor randomness into their plans by estimating the
expected value of outcomes given the uncertainty in their en-
vironments. Another hypothesis is that people implicitly fac-
tor randomness in their plans, by acting as if the world was
certain but changing the effort they exert in response to uncer-
tainty. Of course, it is also possible that people don’t adapt
their plans to uncertainty at all.

To test these hypotheses, we introduce a planning task
where the environment is subject to five graded levels of
stochasticity. We model the participant’s behavior with a flex-
ible parameter reflecting planning effort across the stochas-
ticity conditions. We evaluate this effect across two different
forms of stochasticity.

Experiment 1: Reliability
Imagine you are planning to explore the best pizza spots in
New York City with a group of friends. One of them has
compiled a list of venues from the last time they visited the
city. However, because the list is old, it is possible that the



quality of the restaurants has changed over time - some for
worse, some for better. Here, planning is made difficult by the
reliability of your information. You may find that some of the
restaurants that you visited were better than your friend last
remembered them; other restaurants might be much worse.
The more unreliable the information you get, the harder it is
to plan. In our first task, we explored this relationship - how
unreliability affects people’s planning effort.

Task Design
We designed a minimal task to study how people adapt their
planning effort in response to unreliability, if at all. We de-
signed our task with the following criteria: (1) the task needed
some component of planning or prospective thinking, (2) the
task needed an environment-wide stochasticity parameter that
could be varied across conditions, and (3) we must be able to
infer a player’s depth of planning from their behavior.

For the basic design of the task (ignoring stochasticity), we
used a variant of the game proposed in Snider, Lee, Poizner,
and Gepshtein (2015). Participants are presented with a board
containing several treasure chests arranged in a triangle (Fig
1A). Players begin at the topmost “start” node. For each
move, the player must travel either left-and-down or right-
and-down to a neighboring treasure chest. Each treasure chest
has a number (between 1 and 9, inclusive) written on it cor-
responding to how many points it is worth. The goal is to
maximize the total number of points as they move downward.

We consider five different stochasticity conditions, corre-
sponding to varying levels of unreliability in the environment.
Every treasure chest can be one of two types: a “normal” trea-
sure chest, where the number of points received is the same as
the number written on the treasure chest, or a “mystery” trea-
sure chest, where the number of points received is a random
number drawn from 1 to 9, regardless of the number written
on the treasure chest (Fig 1B). In each game, each treasure
chest has a probability q that it is a mystery chest. Across
the five conditions, we vary q: q = 0%, 25%, 50%, 75%, and
100% probability, where 0% is completely certain and 100%
is completely random (i.e. maximally unreliable). Partici-
pants do not know in advance which specific treasure chests
are “normal” or “mystery”. The only information they are
given about the status of the treasure chests is the probability
q, which is fixed for each game.

Participants
We recruited 100 participants through Prolific. The estimated
duration of the task was approximately an hour. Each partic-
ipant played 10 blocks of 15 games, where the stochasticity
level q was held constant within each block. Participants were
paid 8 USD for taking part in the study and rewarded bonuses
proportional to their above-chance performance on a random
sample of 5 games in the session.

All participants were given comprehension checks and op-
portunities to practice (minimum six practice games: 1 minia-
ture version of the game and one full practice game for each
stochasticity condition) before beginning the full experiment.

Figure 1: Experiment Setup. (A) Task display. The partic-
ipant begins at the root node and moves down to the left or
right at every step. (B) Experiment 1. In the reliability ex-
periment, there is some probability q that any given treasure
chest is a “mystery chest”, which gives you a random number
of points between 1 and 9. (C) Experiment 2. In the transition
noise experiment, there is some probability q that your move
will be “flipped”.

If a participant answered any of the comprehension check
questions incorrectly, they would be required to reread the
instructions and practice games for that instruction module.
Three attention checks were given to each participant; failure
of two attention checks terminated the experiment.

Models
In this task, every move can take one of two possibilities:
left or right. So any model of behavior must take as input the
board state S, the stochasticity level q, and return a probability
that the participant will move left (from which we can also
derive the probability of moving right). That is,

P(a = L|S,q) = f (S,q)

We assume that this decision to move left (or right) is based
on a participant’s utility of moving left or right.

P(a = L|S,q) = f (V (S,q,a = L),V (S,q,a = R))

Since players cannot move back up the tree, the utility of
moving left must be some value function V over the left sub-
tree SL, excluding the rightmost path (the opposite is true for
moving right).

P(a = L|S,q) = f (V (SL,q),V (SR,q))

Specifically, for f , we use a Logistic function over the dif-
ference between the value of moving left and the value of
moving right. Here β is an inverse temperature parameter
corresponding to the decision noise of the participant.

P(a = L|S,q) = Logistic [β(V (SL,q)−V (SR,q))]



On this task, it is unreasonable to assume that participants
consider the entire tree of possible paths from the root. In-
stead, participants may consider only a subset of the nodes
in the tree, performing a kind of “filtering” to select only the
nodes they wish to consider in their plans. This begs the ques-
tion - how do participants choose which nodes to pay atten-
tion to? One possibility is that participants filter the board in
a depth-limited way, only considering paths of length d from
the root. Another possibility is that people first look at the
most rewarding values in the board and ignore the rest, for
example filtering for only the highest k values before plan-
ning. We therefore consider two broad classes of planning
models: depth-limited and value-limited models. We propose
that this filtering process is related to the effort that partici-
pants are willing to exert in planning - given a particular level
of effort, participants might choose to pay attention to more
or fewer nodes on the board.

Depth-limited Models. In depth-limited models, the par-
ticipants consider the boards in a top-down manner, consid-
ering only the subset of the board up to depth d from the
root. We refer to this quantity d as a participant’s planning
depth, and it reflects how deeply a participant is willing to
plan. For example, a participant with planning depth 3 will
only consider the next 3 possible moves from any given po-
sition. We are interested in seeing how this planning depth
d might change across different stochasticity conditions q,
so we incorporate it into our model of behavior as a flexi-
ble parameter that is fitted for each condition. In all cases,
0 ≤ dq ≤ 7, where a depth of 0 corresponds with random be-
havior P(a = L|S,q) = 0.5.

P(a = L|S,q) = Logistic [β(V (SL,q,dq)−V (SR,q,dq))]

People can change their plans in response to uncertainty in
a couple ways. On one hand, people can explicitly factor in
stochasticity when planning, for example by calculating the
expected value of every path given some stochasticity level q.
In the explicit case, the utility function V is sensitive to value
q. On the other hand, people can implicitly factor stochastic-
ity when planning as if there were no stochasticity involved,
but modulate their effort - here represented by planning depth
dq - in response to stochasticity. In the implicit case, the util-
ity function V is insensitive to the value q and responds only
to dq. With this in mind, we consider several possible models:

• Depth Optimal. Optimal behavior on this task is when
V (S,q,dq) is the maximum expected sum of any path in
S, up to depth dq, taking into account uncertainty q. This
model accounts for stochasticity explicitly.

• Depth MaxPath. In this model, V (S,q,dq) corresponds to
the maximum sum of any path in S, up to depth dq.

It is worth emphasizing the difference between this model,
which only implicitly accounts for stochasticity, and the
optimal model, which explicitly accounts for stochastic-
ity. While the optimal model sets V to the expected value,

which accounts for the uncertainty in the environment, the
MaxPath model sets V to the value of the path as if uncer-
tainty were zero. This distinction is subtle, but it leads to
different predictions about behavior. Careful readers may
note that the best path predicted by both models is the
same; while this is true, the value these models assign to
the best paths are different, which affects the models’ pre-
dictions of the probability of a leftward or rightward move.
This subtle distinction is easiest to appreciate when q = 1
(maximum stochasticity). In this case, the optimal model
will behave randomly for all depths because the value of
the left and right subtrees will be exactly equal, whereas
the MaxPath model will still prefer the path that has a
larger sum according to the numbers written on the trea-
sure chests, even if the numbers have no correspondence
with the underlying value.

• Depth Max. In this model, V (S,q,dq) is the maximum
value of any node in S, up to depth dq. This model accounts
for stochasticity implicitly.

• Depth Sum. In this model, V (S,q,dq) is the sum of all
the values of the nodes in S, up to depth dq. This model
accounts for stochasticity implicitly.

Value-limited Models. In value-limited models, the partic-
ipants apply an attentional filter to the board where only the
top k values of the board are retained and the rest of the values
are set to zero. Instead of considering the board in a top-down
manner up to depth dq, the model takes the entire board S and
filters out the top kq values, setting the rest to zero. Here kq
is in a flexible parameter that, like dq, is fitted for each condi-
tion. V (S,q,kq) is maximum sum of any path in S with only
the top k values represented. In this case

P(a = L|S,q) = Logistic [β(V (SL,q,kq)−V (SR,q,kq))]

For each of the depth-limited models proposed, we have
a value-limited counterpart where instead of considering the
board up to depth dq, all but the top kq values are set to zero
and the entire board is considered. We therefore have four
value-limited models: Value Optimal, Value MaxPath, Value
Max, and Value Sum.

In each model, we assume that all actions are condition-
ally independent. Also in each model, the free parameters are
the inverse temperature parameter β and the planning effort in
each condition (dq for the depth-limited models or kq for the
value-limited models). We fitted these parameters to the data
of individual participants using maximum-likelihood estima-
tion. Since all models have the same number of parameters,
no correction on the log likelihood is needed.

Results
Comparing the log-likelihood of the models, we found that
the Depth MaxPath model significantly outperformed all
other models (95% CI, 1M bootstrap samples, Fig 2A). We
wanted to see whether this model replicated the trends seen



Figure 2: Experiment 1 (Reliability): Behavior and Model
Comparison. In all figures, unless otherwise mentioned, er-
ror bars and shaded regions represent mean ±1 SEM for
data and model, respectively. (A) Bootstrapped differences
between the log likelihood of various models and baseline
(Depth MaxPath). Error bars represent 95% CIs. (B) Cumu-
lative reward (compared to random) as a function of move
number for different stochasticity levels q. (C). Proportion of
left moves as a function of the difference in the value of the
maximum path (with no limit on depth) between the left and
right subtrees, binned by quantiles.

in human behavior. We found that participants leveraged
the low-stochasticity condition to gain better rewards com-
pared to random (Fig 2B). We also compared the participants’
propensity to choose left and right as a function of the differ-
ence between the value of the maximum path of the left and
right subtree, up to full depth (Fig 2C). This analysis provides
a good illustration of why the Depth Optimal model fails to
capture participant behavior. Recall that when q = 1, the op-
timal model predicts that participants will behave randomly,
so we would expect to see a flat line at 0.5. What we see in-
stead, however, is that participants still loosely prefer paths
of higher apparent value even if this value is illusory. Our
best-performing model, Depth MaxPath replicates the broad
trends in these findings, across the five different conditions,
suggesting that people perform depth-limited planning and
implicitly account for stochasticity.

To study how planning effort changes with stochasticity,
we fit a linear mixed-effects model of the form yi j = b0 +
b1xi j +ui + εi j, with εi j ∼ N(0,σ2

ε) and ui ∼ N(0,σ2
u), where

y is the planning depth, i is the participant index, and j is the
index of the stochasticity condition. We found a negative ef-
fect of stochasticity level on planning depth (p < 0.001, Fig
3C). To validate this finding, we looked at how stochasticity

level impacted participants’ response times. As response time
is positively correlated with planning (Russek, Acosta-Kane,
van Opheusden, Mattar, & Griffiths, 2022), we wanted to see
whether stochasticity level would also decrease participants’
response time. We found that participants on this task spend
most of their time thinking on the first move (Fig 3A). A lin-
ear mixed-effects model (as above, but where j is the puzzle
index rather than the stochasticity condition) revealed an ef-
fect of the stochasticity level q on the log of the first move
response time (p < 0.001, Fig 3B).

Figure 3: Experiment 1 (Reliability): Planning Depth and
Response Time. (A) Response time as a function of move
number, split by stochasticity level. (B) Response time of the
first move as a function of stochasticity level, with logarith-
mic spacing on the y axis. (C) Model-fitted planning depth as
a function of stochasticity level.

Experiment 2: Transition Noise
In experiment 1, we studied what happens when you have
uncertainty in the value estimates of your states. Now that
we understand how stochasticity influences planning depth
when the information is unreliable, we want to show that this
generalizes to other forms of stochasticity. In the real world,
people may encounter uncertainty not only in their rewards
but also in their actions. Here, we study uncertainty in the
transition function, which we call “transition noise”.

Imagine you are planning to fly home for the holidays, but
you have chosen a budget airline which has no direct flights.
Due to fuel constraints and budget cuts, there is some prob-
ability that any flight you take will be rerouted to a differ-
ent destination, but somehow you must find your way home.
Here, the uncertainty comes from the transition noise - i.e.,
you may intend to take action A but instead be forced to take



action B instead. Here we explore the relationship between
transition noise and planning effort.

Task Design
We used the same task design as in Experiment 1, with a few
modifications. First, all treasure chests were “normal” (no
“mystery” chests) - that is, the number written on the front
of the treasure chest reflected the value you would receive in
points. Instead of varying the reliability of the treasure chests,
we had five different stochasticity conditions corresponding
with varying levels of transition noise. In a given condition,
for a given action, there is some probability q that the action
will be“flipped” and opposite action will be taken instead (Fig
1C). For example, if a participant presses the button to move
left, they will go right instead, and vice versa. Participants
do not know in advance which specific moves will be flipped.
However, the participants do know q, the probability that a
given move will be flipped, q, which is kept constant for each
game. Across the five conditions we vary q : q = 0%, 12.5%,
25%, 37.5% and 50% probability, where 0% corresponds to
actions that are completely certain and 50% corresponds to
actions that are completely random (i.e. maximum transition
noise).

Participants
The recruitment process for participants was the same as in
Experiment 1. We recruited 100 participants for this task on
Prolific. There is no overlap of participants between Experi-
ments 1 and 2.

Models
The behavior of all models remains the same as in Experiment
1, with the exception of the optimal models (Depth Optimal
and Value Optimal). As before, all models define some value
function V over the left and right subtrees, respectively. The
decision to move left and right is based on a strict calculation
of the value of the left and right subtrees, respectively:

P(a = L|S,q) = Logistic [β(V (SL,q)−V (SR,q))]

The optimal models, however, must account for the prob-
ability q that the action is flipped. Therefore, the value of
moving left also needs to account for the probability q that
the participant moves right instead, and vice versa.

P(a = L|S,q) = Logistic[β((1−q)V (SL,q)+qV (SR,q)−
(1−q)V (SR,q)−qV (SL,q))]

= Logistic[β(1−2q)(V (SL,q)−V (SR,q))]

As before, the optimal model represents the maximum possi-
ble reward you can get with any sequence of actions from the
root, taking into account transition noise. The value function
V can be solved with dynamic programming.

Results
We found that the Depth MaxPath model significantly out-
performs all other models in log-likelihood (Fig 4A). As be-

Figure 4: Experiment 2 (Transition noise): Behavior and
Model Comparison. (A) Bootstrapped difference between the
log likelihood of the model and baseline (Depth MaxPath).
Error bars are 95 CI. (B) Cumulative reward (compared to
random) as a function of move number for different stochas-
ticity levels q. (C). Proportion of leftward choices as a func-
tion of the difference in the value of the maximum path (with
no limit on depth) between the left and right subtrees, binned
by quantiles.

fore, we see that participants effectively leveraged the low-
stochasticity condition to gain better rewards (Fig 4B), and
that the difference in the value between the left and right sub-
trees drove the proportion of choosing leftward moves, trends
that are also well captured by the MaxPath model (Fig 4C).
Here again, we can see how the optimal models fail to ac-
count for participant behavior. When uncertainty is maximal,
q = 0.5, the optimal model predicts a flat line for the proba-
bility of moving left at 0.5 when q = 0.5. Instead, we see that
participants still attempt to adhere to higher-valued paths.

A linear mixed-effects model revealed a negative effect of
transition noise level on planning depth (p < 0.001, Fig 5C)
and a negative effect of transition noise level on log first move
response times (p < 0.001, Fig 5B). This indicates that par-
ticipants adapted to stochasticity by reducing their planning
depth.

Discussion
People often plan for the future under uncertainty. It is there-
fore a natural question to ask how this uncertainty shapes how
people plan, if at all. Here we designed a multi-step planning
task and investigated how two different forms of stochasticity,
reliability and transition noise, affected participants’ planning
effort. In Experiment 1, we varied the reliability by changing
the probability that a treasure chest was a “mystery” chest,



Figure 5: Experiment 2 (Transition Noise): Planning Depth
and Response Time Analysis. (A) Response time as a func-
tion of move number, split by stochasticity level. (B) Re-
sponse time of the first move as a function of stochasticity
level, with logarithmic spacing on the y axis. (C) Model-
fitted planning depth as a function of stochasticity level.

whereas in Experiment 2, stochasticity was modulated by the
probability that a move would be flipped.

In both tasks, participants attained greater cumulative re-
wards in lower stochasticity conditions, demonstrating that
they were able to successfully learn the task and adapt to dif-
ferent stochasticity levels. Their decision was also driven by
the differences in the relative values of each subtree, demon-
strating that they had learned the structure of the task.

For both experiments, the Depth MaxPath model outper-
formed all other models at explaining behavior. The fact that
the depth-limited model outperformed all other value-limited
models suggests that people largely plan from the top down
on this task, rather than filtering for the highest values in the
tree. Notably, the algorithm that they chose was not optimal;
the MaxPath model does not take into account the stochas-
ticity when calculating the value of each path. This suggests
that people did not explicitly consider stochasticity in their
approach, but instead compensated for stochasticity by mod-
ulating the effort they applied under different conditions.

Our key finding was that as stochasticity increased, plan-
ning depth monotonically decreased. This effect was sta-
tistically significant in both experiments, demonstrating that
people do in fact consider stochasticity when planning, al-
beit implicitly. We validated our model predictions by ana-
lyzing the first-move response times, which showed a similar
negative relationship between response time and stochasticity
level. For an intuitive explanation for this phenomenon, we

can turn to resource rationality (Lieder & Griffiths, 2020),
which argues that participants take into account the com-
putational costs of cognition when making decisions. Re-
cent work suggests that people plan in a resource-rational
way (Callaway et al., 2018), adapting how deeply they plan
by comparing the cognitive costs of planning and the po-
tential benefits (Sezener, Dezfouli, & Keramati, 2019). Be-
cause the expected reward diminishes with stochasticity while
the cost of computation remains the same, it makes sense
that participants would try to conserve computational cost
on higher stochasticity conditions. We have identified one
mechanism by which participants can conserve computa-
tional load: by reducing the depth at which they are willing
to plan. In this specific task, participants used a suboptimal
but easily computable algorithm (MaxPath) to plan but used
resource-rational principles to scale their cognitive computa-
tion (depth-limiting). In other words, people used effort to
implicitly account for stochasticity rather than explicitly for-
mulating the optimal solution. This finding raises the possi-
bility that people might use cognitive resource allocation (e.g.
effort, attention, memory) as a surrogate for optimal or near-
optimal behavior.

While we have identified a connection between our work
and the framework of resource rationality, it is worth not-
ing that our models are not explicitly resource-rational. A
resource-rational model would quantify the computational
costs associated in planning under different stochasticity lev-
els and derive the dependence of planning depth on stochas-
ticity. Additionally, there are other forms of stochastic en-
vironments that we have not considered here, for example a
“volatile” environment in which the value of each treasure
chest is reliable but has a probability of changing after each
decision. Another possible extension would be to investigate
the costs that participants are willing to incur to reduce un-
certainty. Finally, in multi-player games, people may view
their opponents or collaborators as additional sources of un-
certainty and may adapt their plans accordingly. Taken to-
gether, our work could provide the foundation for a deeper
understanding of how people allocate cognitive resources to
adapt to uncertainty in planning.
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